APMIS 1991, 99:925–930.PubMedCrossRef 27. Brussow H, Canchaya C, Hardt WD: Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic
conversion. Microbiol Mol Biol Rev 2004, 68:560–602.PubMedCrossRef 28. Wiehlmann L, Wagner G, Cramer N, Siebert B, Gudowius P, Morales G, Kohler T, van Delden C, Weinel C, Slickers P, Tummler B: Population structure of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2007, 104:8101–8106.PubMedCrossRef 29. Miller RV, Pemberton JM, Clark AJ: Prophage F116: evidence for selleck inhibitor extrachromosomal location in Pseudomonas aeruginosa strain PAO. J Virol 1977, 22:844–847.PubMed 30. Refardt D: Within-host competition determines reproductive INCB28060 purchase success of temperate bacteriophages. ISME J 2011, 5:1451–1460.PubMedCrossRef 31. Priess H, Kamp D, Kahmann R, Brauer B, Delius H: Nucleotide sequence of the immunity region of bacteriophage Mu. Mol Gen Genet 1982, 186:315–321.PubMedCrossRef 32. Berngruber TW, Weissing FJ, Gandon S: Inhibition of superinfection and the evolution of viral latency. Semaxanib cell line J Virol 2010, 84:10200–10208.PubMedCrossRef 33. Vanvliet F, Couturier M, Desmet L, Faelen M, Toussaint A: Virulent Mutants of Temperate Phage-Mu-1. Mol Gen Genet 1978, 160:195–202.CrossRef 34. Benzer S: Fine Structure of a Genetic Region in Bacteriophage. Proc Natl Acad Sci U S A 1955, 41:344–354.PubMedCrossRef
35. Susskind MM, Botstein D, Wright A: Superinfection exclusion by P22 prophage in lysogens of Salmonella typhimurium. III. Failure of superinfecting phage DNA to enter sieA+ lysogens. Virology 1974, 62:350–366.PubMedCrossRef 36. Susskind MM, Botstein Cobimetinib solubility dmso D:
Superinfection exclusion by lambda prophage in lysogens of Salmonella typhimurium. Virology 1980, 100:212–216.PubMedCrossRef 37. Susskind MM, Botstein D: Molecular genetics of bacteriophage P22. Microbiol Rev 1978, 42:385–413.PubMed 38. Heo YJ, Chung IY, Choi KB, Lau GW, Cho YH: Genome sequence comparison and superinfection between two related Pseudomonas aeruginosa phages, D3112 and MP22. Microbiology 2007, 153:2885–2895.PubMedCrossRef 39. Brown SP, Le Chat L, De Paepe M, Taddei F: Ecology of microbial invasions: amplification allows virus carriers to invade more rapidly when rare. Curr Biol 2006, 16:2048–2052.PubMedCrossRef 40. Irvin RT, Doig P, Lee KK, Sastry PA, Paranchych W, Todd T, Hodges RS: Characterization of the Pseudomonas aeruginosa pilus adhesin: confirmation that the pilin structural protein subunit contains a human epithelial cell-binding domain. Infect Immun 1989, 57:3720–3726.PubMed 41. O’Toole GA, Kolter R: Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 1998, 30:295–304.PubMedCrossRef 42. Mattick JS: Type IV pili and twitching motility. Annu Rev Microbiol 2002, 56:289–314.PubMedCrossRef 43. Whitchurch CB, Mattick JS: Characterization of a gene, pilU, required for twitching motility but not phage sensitivity in Pseudomonas aeruginosa.