133 Kim E, Kim SH, Kim HC, Lee SG, Lee SJ, Jeong SW: Growth inhi

133. Kim E, Kim SH, Kim HC, Lee SG, Lee SJ, Jeong SW: Growth inhibition of aquatic plant caused by silver and titanium oxide nanoparticles. Toxicol Environ

Health Sci 2011, 3:1–6. 134. Nel A, Xia T, Madler L, Li N: Toxic potential of materials at the nanolevel. Science 2006, 311:622–627. 135. Brunner TJ, Wick P, Manser P, Spohn P, Grass RN, Limbach LK, Bruinink A, Stark WJ: In vitro cytotoxicity of oxide nanoparticle: comparison VE-822 research buy to asbestos, silica, and effect of particle solubility. Environ Sci Technol 2006, 40:4374–4381. 136. Reyes-Coronado D, Rodríguez-Gattorno G, Espinosa-Pesqueira ME, Cab C, de Coss R, Oskam G: Phase-pure TiO 2 nanoparticles, anatase, brookite and rutile. Nanotechnol 2008, 19:10–19. 137. Armelao L, Barreca D, Bottaro G, Gasparotto A, Maccato C, Maragno C, Tondello E, Štangar UL, Bergant M, Mahne D: Photocatalytic and antibacterial activity of TiO 2 and Au/TiO 2 nanosystems. Nanotechnol 2007, 18:375709. 138. Reeves JF, Davies SJ, Dodd NJF,

Jha AN: Hydroxyl radicals (OH) are associated with titanium dioxide (TiO 2 ) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells. Mutat Res 2008, 640:113–122. 139. Sondi I, Salopek-Sondi B: Silver BMN673 nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. DNA Damage inhibitor J Coll Inter Sci 2004, 275:177–182. 140. Gade AK, Bonde PP, Ingle AP, Marcato PD, Duran N, Rai MK: Exploitation of Aspergillus

niger for fabrication of silver nanoparticles. J Biobased Mater Bioenergy 2008, GPX6 2:243–247. 141. Sriwong C, Wongnawa S, Patarapaiboolchai O: Rubber sheet strewn with TiO 2 particles: photocatalytic activity and recyclability. J Environ Sci 2012, 24:464–472. 142. Sobha K, Surendranath K, Meena V, Jwala KT, Swetha N, Latha KSM: Emerging trends in nanobiotechnology. J Biot Mol Biol Rev 2010, 5:1–12. 143. Arokiyaraj S, Saravanan M, Udaya Prakash NK: Enhanced antibacterial activity of iron oxide magnetic nanoparticles treated with Argemone mexicana L. leaf extract: an in vitro study. Mat Res Bull 2013, 48:3323–3327. 144. Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam PK, Chiu JF, Che CM: Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 2006, 5:916–924. 145. Priestera JH, Gea Y, Mielkea RE, Horsta AM, Moritzb SC, Espinosae K, Gelbf J, Walkerg SL, Nisbetb RM, Ani YJ, Schimelb JP, Palmere RG, Hernandez-Viezcasc JA, Zhaoc L, Gardea-Torresdeyc JL, Holdena PA: Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. Proc Natl Acad Sci U S A 2012, 109:14734–14735. 146. Yang L, Watts DJ: Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxico Lett 2005, 158:122–132. 147.

Comments are closed.