Results. Refeeding increased plasma glucose/insulin/T3 and muscle Slc2a4 mRNA, reverting insulin resistance. Post-fasting infusions surprisingly induced a further Slc2a4 mRNA decrease (-20%, P smaller than 0.05 vs. fasting), but T3 injection induced a -2-fold increase in Slc2a4
mRNA, 2-4 h later (P smaller than 0.001). Moreover, T3 increased glycemia and insulinemia to the 2 h-refed rats levels, suggesting that T3 elevation is a key factor to the mechanisms of metabolic balance during refeeding. Conclusions. Refeeding induces a rapid increase in muscle Slc2a4 expression, not associated with increased plasma glucose, insulin or amino acids, but highly correlated to increased plasma T3 concentration. This result points out T3 hormone as a powerful Slc2a4 enhancer,
an selleck effect that may be acutely explored in situations of insulin resistance. (C) 2014 Elsevier Inc. All rights reserved.”
“Aims click here Pulmonary arterial hypertension (PAH) is characterized by the development of unique neointimal lesions in the small pulmonary arteries, leading to increased right ventricular (RV) afterload and failure. Novel therapeutic strategies are needed that target these neointimal lesions. Recently, the transcription factor Egr-1 (early growth response protein 1) was demonstrated to be up-regulated early in experimental neointimal PAH. Its effect on disease development, however, is unknown. We aimed to uncover a novel role for Egr-1 as a molecular inductor for disease development in PAH. Methods and results In experimental flow-associated PAH in rats, we investigated the effects of Egr-1 down-regulation on pulmonary vascular remodelling, including neointimal development, and disease progression. Intravenous administration of catalytic oligodeoxynucleotides (DNA enzymes, DNAzymes) resulted in down-regulation of pulmonary vascular Egr-1 expression. Compared with vehicle or scrambled DNAzymes, DNAzymes attenuated pulmonary vascular remodelling, including the development of occlusive neointimal lesions. Selective down-regulation of Egr-1
in vivo led to reduced buy VX-770 expression of vascular PDGF-beta, TGF-beta, IL-6, and p53, resulting in a reduction of vascular proliferation and increased apoptosis. DNAzyme treatment further attenuated pulmonary vascular resistance, RV systolic pressure, and RV hypertrophy. In contrast, in non-neointimal PH rodents, DNAzyme treatment had no effect on pulmonary vascular and RV remodelling. Finally, pharmacological inhibition of Egr-1 with pioglitazone, a peroxisome proliferator activated receptor-g ligand, attenuated vascular remodelling including the development of neointimal lesions. Conclusions These results indicate that Egr-1 governs pulmonary vascular remodelling and the development of characteristic vascular neointimal lesions in flow-associated PAH. Egr-1 is therefore a potential target for future PAH treatment.