6). This procedure
therefore provided a reliable assay for the determination of responses to IAA in the wild type and cgopt1-silenced mutants. The cgopt1-silenced mutants exhibited reduced sporulation compared to the wild type when grown in the light. This difference was not observed in the dark, where both the wild type and mutants produced reduced, but equal numbers of spores (Fig. 6A). Thus, Volasertib manufacturer CgOpt1 is probably associated only with light-dependent sporulation, and is not required for light-independent sporulation. However, IAA had no effect on sporulation in the mutants, unlike the significant enhancement Selumetinib mw of sporulation observed in the wild-type strain. These results suggest that IAA and light enhance sporulation through different pathways, and that CgOpt1 is associated with the IAA-dependent pathway, but not the light-dependent one. In addition, morphological differences were observed between the wild type and cgopt1 mutants when grown in liquid culture, Selleck AP24534 and the addition of IAA induced morphological changes in the wild type, but had almost no effect on the mutants (Fig. 7). Thus both sporulation and pellet morphology, which differ between the wild type and cgopt1-silenced mutants, are affected by IAA in the wild type but not in the cgopt1 mutants. These results suggest that CgOpt1 might be associated with developmental pathways that are also affected by IAA. The abolishment of a response to
IAA in the cgopt1 mutants is surprising and further research is needed to determine the connection between CgOPT1 and IAA. Conclusion Although fungi are capable
of producing IAA, its purpose, if any, is unclear. Here we present evidence that IAA promotes sporulation and causes changes in growth morphology in the fungal plant pathogen C. gloeosporioides. These results suggest the importance of IAA to fungal development and reproduction. In addition, we identified an IAA-responsive gene which appears to be involved in mediating IAA’s effects. At this stage however, the underlying mechanism is unknown and further investigation is needed. Methods Fungi The following ID-8 media were used: regeneration (REG) medium (per liter): 145 g mannitol, 4 g yeast extract, 1 g soluble starch, 16 g agar; Czapek Dox (CD) medium (per liter): 3 g NaNO3, 0.5 g MgSO4·7H2O, 0.5 g KCl, 55 mg FeSO4, 30 g sucrose, 1 g KH2PO4; Emerson’s YpSs (EMS) medium (per liter): 4 g yeast extract, 2.5 g soluble starch, 1 g K2HPO4, 0.5 g MgSo4; pea extract: 900 g of frozen peas boiled in 1.6 liters of water and then filtered. All solid media contained 18 g agar and were supplemented with 100 mg/ml chloramphenicol. Fungi were cultured under continuous fluorescent light as previously described [25]. For liquid cultures, 50 ml medium was inoculated with 107 spores that were collected from a 5-day-old colony. The flasks were placed on a rotary shaker (180 rpm) and incubated at 28°C.