In addition, somatic copy numbers of 661 and 206 genes were also significantly associated with DSS and DFS in our cohort, respectively (P < 1 × 10−4), whereas by chance one could expect only two and one genes, respectively, at the same P value cutoff (Supporting Fig. 1B). Hence, somatic CNAs in HCC are clinically relevant and may provide novel prognostic
markers. We also observed a nonrandom distribution of CNA-to-CNA correlations where unlinked loci were frequently correlated to each other (Supporting Fig. 2). As expected, adjacent loci were highly correlated, whereas check details at a higher level some chromosome arms became either unlinked (e.g., 6p versus 6q and 17p versus 17q) or anticorrelated (e.g., 1p versus 1q and 8p versus 8q). In addition, numerous correlations between unlinked loci were observed, suggesting coselection of these genomic regions (e.g., 1p versus 16p, 1q versus 4q, and 5q versus 19q) as previously reported.[14]
Although the overall CNA pattern is broadly consistent with the literature on HCC,[5, 9, 10, 14] the size and quality of our dataset should provide greater power to accurately localize and identify both large-scale and focal chromosomal alterations. To identify regions of copy number changes that may be responsible for driving tumorigenesis, we applied the GISTIC2 algorithm,[11] which incorporates both amplitude and frequency of CNAs to determine their statistical significance. Amplification or deletion click here peaks identified by GISTIC2 represent recurrent overlapping CNAs among multiple tumors, thus providing a finer resolution for mapping putative oncogenes Palmatine and tumor-suppressor genes. Our GISTIC2 analysis identified 146 focal events,
including 99 amplification peaks and 47 deletion peaks (Fig. 1B; Supporting Table 3). The median size of amplification peaks is 0.24 Mb (ranging from 1.5 kb to 11.6 Mb), containing an average of ∼5 genes per peak (excluding peaks that contain no genes, or “gene-less” hereafter). The median size of deletion peaks is 2.8 Mb (ranging from 46 kb to 122 Mb), containing an average of ∼100 genes per peak. We found that amplification peaks were significantly smaller than deletion peaks (P = 2.6 × 10−7; Supporting Fig. 3), and that genes under the amplification peaks tended to have stronger cis-correlation than those under deletion peaks, whereas both showed stronger cis-correlation compared to genes not located within any peak (Supporting Fig. 3). These observations support the disease relevance of the CNA peaks and are consistent with the assumption that oncogene activation is more locus specific than tumor-suppressor inactivation in cancer. We also thoroughly examined the association of GISTIC2 peaks to clinical and outcome variables (summarized in Supporting Table 4). We next focused on higher confidence peaks with residue Q value (by GISTIC2) ≤0.