Nevertheless, the stability of cloned
CII remained unaffected in ΔhflKC cells. An interesting phenomenon, however, was observed in ΔhflKC cells that were infected by λ. CII expressed from a plasmid was stabilized in these cells [26]. Thus it appears that some additional factors, supplied by the infecting phage, caused a stabilization of CII in the absence of HflKC. The only known phage factor that favors lysogeny by inhibiting the proteolysis of CII by HflB, is CIII [29, 36]. We therefore tested the possible involvement of CIII as the λ factor responsible for the above result, viz. stabilization of CII in λ-infected ΔhflKC cells. We sought to supply λCIII instead of the whole phage in an hflKC-deleted host and investigate its effect on the proteolysis of cloned check details CII. For this purpose, we cloned cIII in tandem behind cII in the same plasmid and inserted it in a host with deleted (AK990) or overexpressed hflKC. CII was indeed stabilized in these cells, even without simultaneous infection by λ (Figure 3). Therefore it appears that infection by λ stabilized CII in ΔhflKC cells because it supplied CIII. Figure 3 Role of HflKC on in vivo proteolysis of CII in the presence of CIII. Proteolytic pattern of exogenous CII (expressed from
pC2C3) in wild type cells (open circles), AK990 (ΔhflKC, squares) or wild type cells carrying plasmid pQKC (triangles). Experimental conditions were similar to those used in Figure 1. CIII is a general inhibitor RG-7388 mouse of CII proteolysis [29, 36, 37]. It is therefore expected that between a wild type strain alone and one that carries CIII, CII would exhibit a greater stability in the latter. A comparison of figures 1 and 3 (open circles) shows that this is indeed the case. Nonetheless, a greater stability of
CII in ΔhflKC cells compared to wild type (both carrying the CIII-expressing plasmid) is surprising, since the absence of hflKC does not affect the stability of CII. CIII is itself a substrate of HflB [38]. If HflKC facilitated the proteolysis of CIII, the above effect could be explained by the preferential stabilization of CIII in ΔhflKC cells. However, there was no difference Immune system in the in vitro proteolysis of CIII by HflB in the presence or absence of purified HflKC (data not shown). Therefore the role of CIII in this paradoxical effect is indirect. Are there additional λ Selleck Givinostat factors that influence the lysis-lysogeny decision? If CIII was the only factor responsible for the stabilization of CII in ΔhflKC cells, infection with a cIII-defective phage would produce clear plaques in a ΔhflKC host. We tested this possibility by infecting both AK990 (ΔhflKC) cells and hflKC-overexpressing cells with lambda cIII 67 [31, 39]. Interestingly, turbid plaques were obtained in each case, unlike the clear plaques produced in wild type E. coli (Table 1). This result is really surprising as cIII – phage always produces clear plaques.