1%), SO2 (6 7%), solid waste (6 7%), CO2 (6 5%), and wastewater (

1%), SO2 (6.7%), solid waste (6.7%), CO2 (6.5%), and wastewater (5.7%), and the inefficiency value of employee (2.6%) is far lower than other sellckchem outputs and inputs. Therefore, the keys of improvement of environmental efficiency are growth of industrial output, energy saving and reduction of pollutant emissions. In order to show the difference of environmental efficiency among subindustries due to industrial characteristics, this study classifies 36 two-digit code industries into three categories according to industrial classification standards provided by NBSC. The three industrial categories are mining, manufacturing, and production and supply of electricity, gas, and water. Table 1 shows that the highest environmental inefficiency value is mining (66.3%), followed by production and supply of electricity, gas, and water (59.

6%) and manufacturing (56.5%). Inefficiency of gross industrial output value, energy consumption, and pollution emissions are the main sources of these three categories’ environment inefficiency. The environmental inefficiency value of gross industrial output value of mining (19.5%) and production and supply of electricity, gas and water (16.6%) are much higher than manufacturing (7.9%). The inefficiency value of energy consumption of all three categories is more than 10%, which indicates that the task of energy saving of China’s industry is very heavy.3.3. Environmental TFP and Its Components The environmental TFP and its components are given in Table 2. The mean value of environmental TFP of China’s industry over the period from 1999 to 2009 is 4.

51%; in other words, the environmental efficiency of China’s industry increased by 4.51% each year. This result is obviously lower than the traditional TFP without considering energy input and pollution outputs. About the components, the pure efficiency change is ?3.69%, pure technical progress is 4.93%, scale efficiency change is 2.88%, and technical progress scale change is 0.39%. It means that technological innovation denoted by pure technical progress makes significant contributions to the improvement of the environmental TFP of China’s industries. Therefore, technological innovation is the main driving factor of upgrading and sustainable development of China’s industry. While the contribution of pure efficiency change is negative, and the contribution of technical progress scale change is small.

Table 2Environmental TFP and its components of China’s industry. The mean value of environmental TFP of mining is 5.46%, which is much higher than production and supply of electricity, gas, and water (2.49%), but lower than manufacturing (5.58%). Pure efficiency change and pure technical progress make the greatest contribution to the environmental Carfilzomib TFP of mining; the mean values of which are 10.48% and 9.66%, respectively.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>