In a CD4-dependent
model of GVHD, Warren and Mark Shlomchik and colleagues from Yale 8 were the first to show that irradiated allogeneic recipients of either total CD4+ T cells or CD44ā CD62L+ TN cells developed severe GVHD, whereas AUY-922 datasheet recipients of CD44+CD62Lā TMP cells remained entirely well and free of GVHD. Furthermore, rapid reconstitution of the peripheral T-cell compartment in the BMT recipients by TMP cells permitted robust recall immunity to third party antigens, indicative that responses to persistent and acquired infections might be preserved. Importantly, protection from GVHD did not rely upon the presence of regulatory T cells within the TMP-cell fraction. Several other groups have since confirmed and extended these findings in experimental BMT by selecting for TMP cells in the bulk T-cell population or from individual CD4+ or CD8+ T-cell subsets of unprimed mice, and by using BMT models that involve MHC mismatches or that are MHC-matched but mismatched for multiple minor histocompatibility (H) antigens 9ā13. In general, the results have been broadly similar, although whether CD44+ CD62L+ TMP cells are as disabled as CD44+CD62Lā TMP cells in inducing GVHD is less clear 11, 14. Caution is required, however, before assuming
that transfer of human memory T cells can successfully be applied to the clinic because the TMP-cell populations in mice housed under specific pathogen-free conditions are likely to be distinct in several respects from the memory T-cell populations found in humans. In such mice, TMP Midostaurin solubility dmso cells arise many as a result of lymphopenia-induced proliferation as new thymic emigrants enter the periphery of neonatal mice 15
or represent the proliferation of cells in response to environmental antigens or allergens. In humans, T cells expressing memory markers will include a greater proportion of cells that have been primed previously following exposure to pathogens. A very high proportion of human memory T-cell lines or clones specific for viruses such as EBV or CMV demonstrate cross-reactivity with allogeneic peptide:HLA, a consequence of the degenerate TCR recognition of peptide:HLA ligands 16. Although alloreactivity is also demonstrable in the human TN-cell pool 17, memory populations, which contain unprimed TMP cells as well as primed effector memory T (TEM) cells, could be potentially more harmful than TN cells since they are less stringent in their requirements for TCR stimulation or costimulation than their TN-cell counterparts 1. Reduced susceptibility to apoptosis or to peripheral tolerance mechanisms in the host might also make such human memory T-cell populations more dangerous than TN cells 1. This increased alloreactivity could also be relevant in cases where the donors and recipients are HLA-matched, but the donors are female and have previously been primed to male antigens as a result of pregnancy 18.