16 and p = 0.15) or the carbonated water (p = 0.21 and p = 0.14) from the sampled coolers in relation with the time since the last filter was substituted. Other microorganisms were isolated from 6 (20%), 25 (65.8%), and Idasanutlin 27 (71.1%) samples of the tap, non-carbonated, and carbonated waters. The bacteria were identified
mainly to be Pseudomonas species, which was recovered respectively from 6 (20%) samples of the tap water and from 19 (50%) samples either of the non-carbonated or the carbonated waters, and the mean concentrations were 48.3 CFU/mL, 241.5 CFU/mL, and 137.2 CFU/mL, respectively. Species of Stenotrophomonas, Pasteurella, Enterobacteria, and Flavobacterium were also isolated mainly from the non-carbonated or the carbonated waters. With regard to the chemical parameters, in all samples the nitrite, ammonium, and free active chlorine residual did not exceed the reference values of the drinking water regulation. The mean average values of the three parameters for the tap water were 0.06 mg/L (range 0.001-0.15) for nitrite and 0.08 mg/L (range 0.01-0.25) for both ammonium and free active chlorine residual; whereas, for the carbonated and non-carbonated waters the average values were 0.076 (range 0-0.025) and BAY 63-2521 supplier 0.06 mg/L (range 0-0.025) for
nitrite, 0.08 (range 0-0.3) in both waters for ammonium, and 0.3 (range 0.2-0.4) and 0.29 mg/L (range 0.2-0.4) for free active chlorine residual, respectively. Finally, the pH of the tap and non-carbonated waters did not exceed the reference value and both means were 7.8 ranging from 6.8
and 8.4, whereas for the carbonated the Dichloromethane dehalogenase vast majority of the samples (86.8%) had a value lower than the reference limit with an overall mean of 6 and a range of 5.2 and 6.8. Discussion This study sought to determine the quality of drinking water dispensed by water coolers from commercial stores in comparison with tap water in the geographic area of Naples, Italy. In this investigation, the microbiological quality of the drinking water was satisfactory for the chemical indicators of organic contamination in all samples, probably because the values of microbial counts were not high enough to modify them. It PX-478 molecular weight should be noted that the same pattern has not been observed for the quantitative and qualitative microbiological parameters. Indeed, should be of concern the finding that a large number of non-carbonated and carbonated water sampled from coolers revealed a bacteria count higher than the limits stated for TVC. Moreover, contamination with Escherichia coli and Enterococcus spp. were not observed in any of the tap and dispensers water samples. The absence of these microorganisms, considered to represent an indicator of faecal contamination, renders the water satisfactory and safe with no health implications.